
Contingency Planning for Planetary Rovers

Richard Dearden�, Nicolas Meuleau�,
Sailesh Ramakrishnan�, David Smith

and Rich Washington�

NASA Ames Research Center
Mail stop 269–2

Moffet Field, CA 94035–1000, USA
�dearden, nmeuleau, sailesh,de2smith, richw�@email.arc.nasa.gov

Abstract

There has been considerable work in AI on planning under uncertainty. But this work
generally assumes an extremely simple model of action that does not consider continuous time
and resources. These assumptions are not reasonable for a Mars rover, which must cope with
uncertainty about the duration of tasks, the power required, the data storage necessary, along
with its position and orientation.

In this paper, we outline an approach to generating contingency plans when the sources of
uncertainty involve continuous quantities such as time and resources. The approach involves
first constructing a “seed” plan, and then incrementally adding contingent branches to this plan
in order to improve utility. The challenge is to figure out the best places to insert contingency
branches. This requires an estimate of how much utility could be gained by building a contin-
gent branch at any given place in the seed plan. Computing this utility exactly is intractable,
but we outline an approximation method that back propagates utility distributions through a
graph structure similar to that of a plan graph.

1 Introduction

For a Mars rover, daily operation is rife with uncertainty. There is inherent uncertainty about the
duration of tasks, the power required, the data storage necessary, position and orientation, and
environmental factors such as soil characteristics, dust on the solar panels, ambient temperature,
etc. For example, in driving from one location to another, the amount of time required depends on
wheel slippage and sinkage, which varies depending on slope, terrain roughness, and soil charac-
teristics. All of these factors also influence the amount of power that is consumed. The amount

� Research Institute for Advanced Computer Science (RIACS)
� QSS Group Inc.
� QSS Group Inc.
� RIACS

1

of energy collected by the solar panels during a traverse depends on the length of the traverse, but
also on the angle of the solar panels. This is dictated by the slope and roughness of the terrain.

Since rover operations are often highly constrained by time and power constraints, plans that
do not take this uncertainty into account often fail miserably. In fact, it has been estimated that the
Mars Pathfinder rover spent a substantial amount of its life doing nothing because of either plan
failure or conservative action sequences constructed to avoid any possibility of plan failure. One
way to attack this problem is to do on-board replanning when failures occur. While this capability
is certainly desirable, there are several difficulties with exclusive reliance on this approach:

� Rovers have severely limited computational resources due to power limitations and radiation
hardening requirements. As a result, it is not always feasible to do timely or significant
onboard replanning.

� Many actions are potentially risky and require pre-approval by mission operations personnel.
Because of the cost and difficulty of communication, the rover receives infrequent command
uplinks (typically one per day). As a result, each daily plan must be constructed and checked
for safety well in advance.

� Some contingencies require anticipation; e.g., switching to a backup system may require that
the backup system be warmed up in advance. For time critical operations there is insufficient
time to perform these setup operations once the contingency has occurred, no matter how fast
the planning can be done.

For these reasons, it is sometimes necessary to plan in advance for potential contingencies;
that is, anticipate unexpected outcomes and events and plan for them in advance. In this paper we
will be concerned with ground-based contingency planning for rovers. More precisely, the prob-
lem is to produce a (concurrent) plan with maximal expected utility, given the following domain
information:

� A set of possible goals that may be achievable, each of which has a value or reward associated
with it.

� A set of initial conditions, which may involve uncertainty about continuous quantities like
temperature, energy available, solar flux, and position. This uncertainty is characterized by
probability distributions over the possible values.

� A set of possible actions, each of which is characterized by:

– a set of conditions that must be true before the action can be performed. (These may
include metric temporal constraints and constraints on resource availability.)

– an uncertain duration characterized by a probability distribution.

– a set of certain and uncertain effects that describe the world following the action. Un-
certain effects on continuous variables are characterized by probability distributions.

Contingency planning is already known to be quite hard both in theory [5] and in practice.
However, there are some characteristics of this domain, which make this planning problem differ-
ent and even more difficult:

Time - actions take differing amounts of time and concurrency is often necessary.

Continuous outcomes - most of the uncertainty is associated with continuous quantities like time
and power. In other words, actions do not have a small number of discrete outcomes.

2

1. Generate a seed schedule
2. Identify most likely failure
3. Generate a contingency branch
4. Insert the branch

Figure 1: The JIC approach.

Problem size - a typical daily plan for a rover will involve on the order of a hundred actions.

As a result of these characteristics, it is not clear how to apply previous approaches to planning
under uncertainty to this problem. In this paper, we outline a much different approach to this
problem. At the top level, the approach involves 1) constructing a “seed” plan, and 2) incrementally
adding contingent branches to this plan in order to improve utility. The challenge is to figure
out the best places to insert contingency branches. In general, this requires an estimate of how
much utility could be gained by building a contingent branch at any given place in the seed plan.
Computing this utility exactly is intractable, but we outline an approximation method that involves
back propagating utility distributions through a graph structure similar to that of a plan graph.
In Section 2 we discuss Just-in-Case Planning, our incremental approach to contingency planning
based on the Just-in-Case Scheduling work of Drummond, et al[3].We also argue that for planning,
probability of failure is not a good heuristic for choosing branch points. In Section 3 we describe
our plan graph method for estimating branch utility curves. In Section 4 we describe how this
information is used in order to 1) choose branch points, 2) guide the planner in selecting goal sets,
and 3) choose the correct branch condition.

2 Just-In-Case Planning

In the classical approach to contingency planning, each time an action with uncertain outcomes is
added to a plan, the planner attempts to establish the goals for each different outcome of the action.
Unless there are only a few discrete sources of uncertainty in a domain, this approach is completely
impractical. For more complex domains, it is critical that the planner focus on those contingencies
that will make a large difference in the overall value of the plan. To do this, we build upon the Just-
In-Case(JIC) scheduling technique[3], that was initially developed for contingency scheduling of
automated observatories. The basic idea in the JIC approach is to take a seed schedule, look for
the place where it is most likely to fail, and augment the schedule with a contingent branch at that
point. The process is repeated until the resulting contingent schedule is sufficiently robust, or until
available time is exhausted. This process is illustrated in Figure 1.

Conceptually, it seems straightforward to apply the JIC approach to planning problems. Using a
conventional planner, we first generate a seed plan assuming the expected behavior of each activity;
in other words, we reason as if every action uses the expected amount of time and resources. This
is the same approach taken in JIC scheduling. As with JIC scheduling, we then choose a place to
insert a contingency branch. Once again, using a conventional planner, we generate a plan for the
contingency branch and add it to the existing plan. 1

1Just as with JIC scheduling, this process is not guaranteed to converge to an optimal contingent plan. However,

3

��

���

�� �

��� ���	
����

���
���

���
��	���

� �

Figure 2: Example showing that the place where the plan is most likely to fail may not be the best
branch point.

2.1 The JIC Branch Heuristic

For JIC planning, the tricky part is deciding where to insert contingency branches, and what
the branch conditions should be. In Drummond et al.’s original implementation for automatic
telescope scheduling, branches are added at the points with the greatest probability of failure.
Given the distributions for time and resource usage this is relatively easy to calculate by statistical
simulation of the plan. Unfortunately, the points most likely to fail are not necessarily good points
for contingent branches. Consider the example in Figure 2 where we have a seed plan with two
actions, �� and ��, leading to a goal � that has positive value. Initially we have 20 units of some
resource (say power) and each of the actions consumes somewhere between 5 and 15 units of the
resource. Clearly, this plan is most likely to fail after (or during) action ��. However, if the plan
fails after (or during) action ��, there will not be any resources left. If all the alternative activities
require some of this resource, then there is clearly no point in putting a contingent branch after ��.

Fundamentally, the problem is that in order to select the best place to insert a branch, we need to
know whether or not it is possible to accomplish anything useful at the points under consideration.
More precisely, we need to know how much utility could be gained by inserting a branch at each
given point. In order to do this, we need to know the value function of the mainline plan and of
each possible branch. The value function gives the expected future reward (utility) at each step of
a plan, as a function of the resource levels.

Computing the value function for a completed plan (such as the seed plan) is relatively straight-
forward. It may be done analytically if the resource consumptions for activities are simple distri-
butions. However, more typically, Monte Carlo simulation is required [1, 6]. Similarly, it is easy to
get an estimate of the probability distribution over resources at each step of a plan. A crucial piece
of information is then the value function of the best branch plan that can be added at each point in
the existing plan. Given this information, we can easily determine the optimal branch point in the
plan. We just have to compare the relative gain in utility obtained by considering the best possible
branch plan at each point and pick the branch point where this gain is maximal. Unfortunately,
there is no easy way to calculate the value function for the best possible branch plan at a given
point. It requires actually doing the planning for the branch. Instead we must approximate this
value function. In the next section, we present a procedure designed to estimate the value function
of the best possible branch plan that could be generated at each point, without actually doing the
planning.

JIC will always monotonically improve a plan until a local optimum is reached.

4

3 Estimation of Branch Utility

The main procedure of our algorithm computes an estimate of the value function of the best possi-
ble branch plan, at each point of the mainline plan. It is based on a representation of the planning
problem as a graph identical to the plan graph of Blum and Furst’s Graphplan [2, 4]. Graphplan
is a classical planning algorithm that first performs a reachability analysis by constructing a plan
graph, and then performs goal regression within this graph to find a plan. Our approach retains
only the first of these stages, the plan graph construction. We then perform backpropagation of
utility tables in the graph to produce estimates of utility functions (instead of plans). This section
provides an outline of this mechanism.

3.1 The Plan Graph

The plan graph is a sequential graph that alternates propositional (fluent) levels and action levels.
Each propositional level contains the set of propositions that can be made true at that level, and a
set of mutual exclusion(mutex) constraints between pairs of these propositions. A mutex between
two fluents indicates that these propositions cannot both be true at the same time at this level of the
graph.2 The first propositional level contains all the fluents that are true in the initial state of the
problem (initial conditions). The action levels contain all the actions that can be applied given the
previous propositional level. Each action has an arc from each fluent that it consumes and an arc
to each fluent it produces.

Figure 3 shows a part of the plan graph obtained in a simple example where the only continuous
variable is power. In this problem, the mainline plan(shown in bold) consists of two actions: �
which takes the fluent � as precondition and produces � and �, and � which has � as precondition
and � as effect. The fluent � represents a goal that provides a reward (utility) of 5. For each action,
the expected consumption is 10 Ah, and it can be started only if the current level of resource is
atleast 15 Ah. Three other actions, �, �, and 	, are available in the domain, but they are not
included in the mainline plan. The fluent �� represents a secondary goal with utility 1. Finally,
both � and
 are true and all the other fluents are false in the initial conditions. There are two
points of the mainline plan that are candidate branch points: at the beginning of the plan, and
between � and �. The latter is characterized by the following set of propositions: �, �, � and
 (all
other fluents being false). Our goal is to estimate the best utility gain we can get by branching at
these points.

3.2 Utility Table Backpropagation

The basic principle of our algorithm is to backpropagate utility distribution tables in the plan graph.
Each table is attached to a single (action or proposition) node and contains:

� a condition, that is, a list of fluents such that the table is valid if all the fluents are true.

� a piecewise constant function giving utility as a function of resource level. It represents an
estimate of the expected reward we can get by performing this action, or by having this fluent
true, as a function of current resource levels, if all fluents in the table condition are true.

2Note that the reciprocal is not true: since Graphplan takes into account only binary exclusion constraints, two
fluents that are not mutex in the graph may in fact be unreachable simultaneously.

5

A

C

D

B

E

p

q

r

s t

g’

g

(10, 15) (10, 15)

(3, 3)

(1, 1)

(2, 2)

Figure 3: An example of plan graph (partial). The two numbers below each action represent, first,
its expected consumption, and second, the minimum power required to be allowed to start this
action.

The process is initialized by creating utility tables for the goals. In our example, we start with a
table for � with an empty condition, and an expected return of 5 for positive resource levels (and 0
otherwise), indicating that we obtain a reward of 5 if we can get to � with some power remaining.
Similarly, �� has a table with an empty condition and reward 1.

We then backpropagate these tables in the plan graph, until all the tables have reached the initial
conditions. First, a table is created for action �, based on the table in �. Its condition is set to the
empty set (the condition of the table in �), and its utility function is defined by:

����� �

�
� �� � �� �
����� ��� 	
������ �

(1)

where ����� and ����� are the (piecewise constant) utility estimates encoded by the tables in �

and � respectively. The first line expresses the fact that we are not allowed to start � if the current
energy is at or below 15 Ah. The second says that � consumes 10 Ah and leads to �, from where
we can get the reward encoded by ��. A similar table is created for 	 as shown in Figure 4.

3.3 Conjunctive Preconditions

Since 	 has two fluents as preconditions, � and �, two copies of its table are created, one for each
fluent node. The value functions encoded by these tables are both equal to the function of the table
for � (����� � ����� � �����). However, their conditions are different. The condition of the table
for � is ���, while the condition of the table for � is ���.

The table in � will be backpropagated through action � to a table in
.This table has condition
��� and predicts 0 reward if � � � (the consumption of � plus the consumption of), and 1
otherwise. When this new table is created in
, we need to change its condition from ��� to ���.
To do this we apply the consumption of action � to the table. The result is a table attached to

with ��� as condition and predicting 0 reward if � � � (the sum of the consumptions of �, � and
) and 1 otherwise. Similarly, the table in � with ��� as condition is backpropagated to fluent �
through action �.

We then have two tables, one for � with �
� as condition, and one for
 with ��� as condition,
that both encode the same plan: �����, then 	. However, they represent different orderings of �
and �.

6

D
s

E

r

t

g’

(2, 2)

2

1

3

1

t

2

1

1

1

2

r

1

5

p

s

C

p

Figure 4: Utility table propagation for conjunctive preconditions

In general, this process may lead to several tables attached to the same node, since there may
be several ways to support a fluent. The total number of tables is limited by merging all the tables
that have the same condition at some node: they are replaced by a single table that encodes the
maximum of all their value functions.

3.4 Conjunctive Effects

The most interesting step of the backpropagation mechanism is illustrated by action � in Figure 5.
Since this action has two effects, it will receive utility tables from both nodes.

Each time a table is backpropagated to �, we merge it with all other tables at �. In our
example, when we want to backpropagate the table from �, we first test if the table in � can be
merged with it. The test is successful if and only if the condition of the table for � implies that
of the table for �, which is not true. Therefore, the test fails and we backpropagate the � table
independently. However, when we consider backpropagating the table for �, the test is successful
(since � ��
��) and we merge the two tables. The table in � inherited from � has condition ���,
and encodes the value function defined by

����� �

�
� �� � �� �
��� ������ ���� ����� ���� 	
������ �

(2)

The use of the max operator in equation (2) corresponds to a pessimistic view where we assume
that we can never get the rewards of two different goals in the same execution run.

To deal with situations where several goals are reachable, we use a more complex operator that
requires augmenting the utility tables. We add: (i) the sum of the expected consumptions of the
actions performed to get the utility encoded by the table, and (ii) the goals that are responsible for
this utility. They both are a function of the resource level �. These are piecewise constant like the
utility function. In the case of action �, we have

����� �

��
�

� �� � �� �
��� ������ ��� � ����� ��� ����� �����

����� ��� � ����� ��� ����� ����� 	
������ �

(3)

The first of the two alternatives represents performing �, pursuing the goals beyond �, and then
the goals beyond �. The second alternative follows the same reasoning, but pursuing � before �.

7

A B

(10, 15) (10, 15)

5

5

15

15

2

1

25

5 5

1
15 25

p

t

r

q g

Figure 5: Utility table propagation for conjunctive effects

A

C

D

p

s

(10, 15)

(3, 3)

(1, 1)

5

1
15 25

5

1
25

1

6

6

Figure 6: Extracting utility estimates(using the MAX operator)

The information about the goals pursued is used to avoid counting the same goal twice, which
is a potential flaw of the previous rule. If the goals pursued in the two tables (for a given resource
level) intersect, then we use a simple max rule as in (2). In the case of action � in our example,
the goals in the tables attached to � and � do not intersect, so we use rule (3).

3.5 Extracting Utility Estimates

Once the utility tables have been backpropagated down to the fluents representing initial conditions
of the problem, we extract the utility estimates for the candidate branch points from the graph. We
start with the point between � and �, characterized by the set of fluents ��� �� ��
�. We build a
single utility table for this branch point by merging all utility tables attached to �, � , � and
 nodes
whose condition is included in ��� �� ��
� (that is, whose condition is true when we are at the point
between � and �). This is all the tables that represent utility apparently reachable when �, �, � and

 are true simultaneously. These tables are merged using a simple max operator as in equation (2)
or the more complex operator of equation (3), depending on the context. The resulting table is the
value function estimate that we need.

8

G3

G4

Branch Estimate

Mainline Utility

Branch Conditions

Figure 7: Selecting the branch point, branch condition and goals

As shown in Figure 6, the calculation for the branch point at the beginning of the mainline plan
uses two tables:

� the table attached to � with �
� as condition and showing that a reward of 1 may be reach if
�� � � ��, and a reward of 5 may be reached if � � ��;

� the table attached to
 with ��� as condition and showing a reward of 1 may be obtained if
� � � (the sum of the consumptions of �, � and).

The resulting table, which characterizes this branch point, shows that no reward can be obtained
from here if � �, that a reward of 1 is available if � � � ��, and that a reward of 5 may be
obtained if � � ��. Using equation (3) instead of (2), we would also have identified the possibility
of reaching both � and �� if there are sufficient initial resources.

4 Using Utility Estimates

Given the utility estimates at the various branch points, we can now use this information to select
the branch point, the branch condition and the set of goals to pursue. For a particular branch point,
we compute the gain in area for the branch utility estimate over the mainline utility. This represents
the net utility gain of the branch. The branch condition is composed of the points where the utility
curves cross. The goals for the contingent branch correspond to the portion of the utility estimate
that is greater than the utility curve of the mainline plan.

For example, in Figure 7, we show the mainline utility curve and the branch estimate curve for
a branch point. The shaded area represents the utility gain for the branch. The branch conditions
are shown and the goal corresponding to the utility gain is G3.

The JIC Planning algorithm is summarized below:

1. Generate a “seed” plan.

2. Find the best branch

(a) Estimate the branch utility curves

(b) Compute the net utility gain

(c) Identify the branch conditions and associated goals to pursue

9

3. Generate the contingency branch

4. Insert the branch

5 Conclusions

For a Mars rover, uncertainty is absolutely pervasive in the domain. There is uncertainty in the
duration of many activities, in the amount of power that will be used, in the amount of data stor-
age that will be required, and in the location and orientation of the rover. Unfortunately, current
techniques for planning under uncertainty are limited to simple models of time, and actions with
discrete outcomes. In the rover domain there are concurrent actions, actions of differing duration,
and much of the uncertainty is associated with continuous quantities like time, power, position and
orientation.

For any non-trivial problem, it seems unlikely that exact or optimal solutions will be possible.
In this paper, we have outlined an incremental technique for building up contingent plans. It uses
a novel method for estimating the utility of possible branches. We are currently implementing
this algorithm for the Mars Smart Lander Technology Demonstration Effort using the EUROPA
planning system to generate seed and branch plans.

References

[1] D.P. Bertsekas and J.N. Tsitsiklis. Neuro-dynamic Programming. Athena, Belmont, MA,
1996.

[2] A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial Intelligence,
90:281–300, 1997.

[3] M. Drummond, J. Bresina, and K. Swanson. Just-In-Case scheduling. In Proceedings of the
Twelfth National Conference on Artificial Intelligence, pages 1098–1104, 1994.

[4] S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB and other CSP
search techniques in Graphplan. Journal of AI Research, 12:1–34, 2000.

[5] M. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity of probabilistic
planning. Journal of AI Research, 9:1–36, 1998.

[6] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA, 1998.

10

